

Designation: D1331 – 20

Standard Test Methods for Surface and Interfacial Tension of Solutions of Paints, Solvents, Solutions of Surface-Active Agents, and Related Materials¹

This standard is issued under the fixed designation D1331; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 These test methods cover the determination of surface tension and interfacial tension of a variety of liquid materials, including but not restricted to paints, solvents, and solutions of surface-active agents, as defined in Terminology D459. Four methods are covered as follows:

Method A-Surface Tension by du Noüy ring;

Method B-Interfacial Tension by du Noüy ring;

Method C—Surface Tension by Wilhelmy plate; and

Method D—Interfacial Tension by Wilhelmy plate.

1.2 Method A originally was written primarily to cover aqueous solutions of surface-active agents, but is also applicable to aqueous paints, nonaqueous solutions (including paints) and mixed solvent solutions.

1.3 Method B is applicable to two-phase solutions. More than one solute component may be present, including solute components that are not in themselves surface-active.

1.4 Method C is applicable to surface active liquids and, unlike du Noüy ring, no buoyancy corrections are needed and results are not affected by moderate viscosities (1-10 Pa-sec) of the liquid. It is the recommended method for use with paints and resin solutions.

1.5 Method D is applicable to two-phase solutions and mixtures.

1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage.

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

D459 Terminology Relating to Soaps and Other Detergents E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 du Noüy ring, n-platinum wire ring.

3.1.2 Wilhelmy plate, n—flat, thin plate made of glass or platinum.

4. Summary of Test Methods

4.1 *du Noüy Ring Methods*—The ring is suspended from a tensiometer or balance. The test liquid is brought into contact with the ring until the latter is covered. For interfacial tension measurements, the ring must be at the interface between the two liquids. The ring is then slowly withdrawn until a maximum force is attained, from which the surface or interfacial tension may be calculated.

4.2 *Wilhelmy Plate Methods*—The plate is suspended from a tensiometer or balance. The test liquid or interface between two liquids is brought into contact with the bottom of the plate, causing the plate to be pulled down into the liquid by the surface tension force. The force applied to the plate from above

¹ These test methods are under the jurisdiction of ASTM Committee D01 on Paint and Related Coatings, Materials, and Applications and are the direct responsibility of Subcommittee D01.24 on Physical Properties of Liquid Paints & Paint Materials.

Current edition approved Dec. 1, 2020. Published January 2021. Originally approved in 1954. Last previous edition approved in 2014 as D1331 – 14. DOI: 10.1520/D1331-20.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

is then increased to bring the bottom edge of the plate level with the flat surface of the liquid. The force acting on the plate is measured and used to calculate the surface tension of the liquid or the interfacial tension between two liquid phases.

5. Significance and Use

5.1 These methods provide data that are useful in evaluating the effectiveness of surface active agents in reducing surface tension. In addition, surface tension data can predict interactions between liquids and solid surfaces or other liquids and can be used to establish wetting properties of paints, solvents, and other liquids.

5.2 A number of laboratories have found the Wilhelmy plate to be easier to use, easier to clean and generally better for use with pigmented paints.

6. Interferences

6.1 The du Noüy ring is difficult to clean when used with pigmented paints. Paints high in titanium dioxide have a tendency to coat the ring with a layer that is almost impossible to remove. If left on the ring, this layer of material affects the surface tension values that are measured.

6.2 Paint measurements with the du Noüy ring are affected by viscosity above a level of 10 Poise (1 Pa-sec). Many coatings have a viscosity at rest greater than that level. Above 10 P, the resistance of the ring to being pulled is as much due to viscosity as to surface tension.

METHOD A—SURFACE TENSION BY DU NOÜY RING

7. Apparatus

7.1 *du Noüy Tensiometer*—Either the du Noüy precision tensiometer or the du Noüy interfacial tensiometer, equipped with either the 4 or the 6-cm circumference platinum ring, as furnished by the manufacturer, may be used. The tensiometer shall be placed on a sturdy support that is free from vibrations and other disturbances such as wind, sunlight, and heat. The wire of the ring shall be in one plane, free of bends or irregularities, and circular. When set in the instrument, the plane of the ring shall be horizontal, that is, parallel to the surface plane of the liquid being tested.

7.2 *Sample Container*—The vessel for holding the liquid shall be not less than 6 cm in diameter, and sufficiently large to ensure that the contact angle between the ring and the interface is zero.

8. Preparation of Apparatus

8.1 Clean all glassware thoroughly. The use of fresh chromic-sulfuric acid cleaning mixture, followed by a thorough rinsing in distilled water, is recommended.

8.2 Clean the platinum ring by rinsing thoroughly in a suitable solvent and in distilled water, before taking a set of measurements. Allow the ring to dry, and then heat to white heat in the oxidizing portion of a gas flame.

9. Calibration of Apparatus

9.1 Calibrate the tensiometer or balance according to the manufacturer's directions.

10. Procedure

10.1 After the tensiometer has been calibrated, check the level and insert the cleaned platinum ring (Note 1) that will be used in the measurement. Check the plane of the ring, and set the dial and vernier at zero. Adjust the rear adjusting screw so that the index level of the arm is opposite the reference mark on the mirror, that is, the ring system is at the zero position.

Note 1—Extreme care must be taken to have the sample vessel and platinum ring clean. Contamination of the liquid surface by dust or other atmospheric impurities during measurement should be avoided.

10.2 Place the solution to be tested (Note 2), contained in the thoroughly cleaned vessel (Note 1), on the sample platform. Raise the sample platform by means of its adjusting screw until the ring is just submerged.

NOTE 2—For surface active agents: since the surface tension of a solution is a function of the concentration, care must be taken that the concentration is adjusted and recorded within known limits. The presence of solutes other than the surface-active agent should be ascertained and reported qualitatively and quantitatively, insofar as possible. This includes hardness components in the water. Care should be taken that the solution is physically homogeneous. Measurements made near or above the cloud point or other critical solubility points can be in serious error. This is particularly true when the solute is a surface-active material.

10.3 Lower the platform slowly, at the same time applying torsion to the wire by means of the dial-adjusting screw. These simultaneous adjustments must be carefully proportioned so that the ring system remains constantly in its zero position. As the breaking point is approached, the adjustments must be made more carefully and more slowly. Record the force reading from the dial or the digital display when the ring detaches from the surface.

10.4 Make at least two measurements. Additional measurements shall be made if indicated by the over-all variation obtained, the total number of readings to be determined by the magnitude of that variation.

10.5 Record the temperature of the solution and the age of the surface at the time of testing. Since the submerging of the ring (10.2) may constitute a significant disturbance of the surface, take the age as the elapsed time between submersion and breakaway of the ring. The accuracy of this time observation may be indicated in the usual manner. In most cases an accuracy of ± 5 s is reasonable, and sufficient for this test method.

11. Calculation and Report

11.1 The dial reading, obtained from a measurement carried out in the foregoing manner with a calibrated instrument, is actually the pull per linear centimetre on the ring (both inner and outer circumference being considered) at the break-point, expressed in dynes. This value, called the uncorrected surface tension, must be multiplied by a correcting factor, F, to give the corrected surface tension. F is a function of the contours of the liquid surface in the neighborhood of the ring at the instant of breakaway. It can be numerically specified in terms of R, the