

4.3 The conversion of the subject materials to their corresponding gases takes place largely during combustion of the sample at an elevated temperature in an atmosphere of purified oxygen. Here, a variety of gaseous materials are produced, including the following:

4.3.1 Carbon dioxide from the oxidation of organic and elemental carbon,

4.3.2 Hydrogen halides from organic halides (and organic hydrogen, as required),

4.3.3 Water vapor from the oxidation of (the remaining) organic hydrogen and the liberation of moisture,

4.3.4 Nitrogen and nitrogen oxides from the oxidation of organic nitrogen, and

4.3.5 Sulfur oxides from the oxidation of organic sulfur. In some systems, sulfurous and sulfuric acids can also be obtained from a combination of the sulfur oxides and the water vapor.

4.4 There are several accepted ways of isolating the desired gaseous products and quantitatively determining them. These are as follows:

4.4.1 *Test Method A*^{3,4}—From the combustion product gas stream, oxides of sulfur are removed with calcium oxide in the secondary combustion zone. A portion of the remaining mixed gases is carried by helium gas over a hot copper train to remove oxygen, and reduce NO_x to N₂, over NaOH to remove CO₂, and over magnesium perchlorate to remove H₂O. The remaining elemental nitrogen is measured by the thermal conductivity cell. Simultaneously, but separately from the nitrogen measurement, the carbon and hydrogen selective infrared cells measure the CO₂ and H₂O levels.

4.4.2 *Test Method B*^{4,5}—From the combustion product gas stream (which is cleaned from sulfur oxides, excess oxygen, etc. as in 4.4.1), the remaining CO₂, water vapor, and N₂ are flushed into a mixing chamber and are thoroughly homogenized at a precise volume, temperature, and pressure. After homogenization, the chamber is depressurized to allow the gases to pass through a heated column, where the gases separate as a function of selective retention times. The separation occurs in a stepwise steady-state manner for nitrogen, carbon dioxide, and water.

4.4.3 *Test Method C*^{4,6}—The combustion product gas stream, after full oxidation of component gases, is passed over heated copper to remove excess oxygen and reduce NO_x to N₂ gas. The gases are then passed through a heated chromatographic column to separate and elute N₂, CO₂, and H₂O in that order. The individual eluted gases are measured by a thermal conductivity detector.

³ The sole source of supply of the Leco CHN-600 instrument known to the committee at this time is Leco Corporation, 3000 Lakeview Ave., St. Joseph, MI 49085.

⁴ If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee ¹, which you may attend.

⁵ The sole source of supply of the Perkin Elmer 240C, 2400 series and CEC 240XA and 440 instruments known to the committee at this time is Perkin Elmer Corporation, Main Ave., Norwalk, CT 06856.

⁶ The sole source of supply of the Carlo Erba 1106, 1108, and 1500 instruments known to the committee at this time is Carlo Erba Strumentazione, Strada Rivoltana, 20090 Rodano, Milan, Italy.

4.4.4 *Test Method D*^{4,7}—The organic samples are packed into lightweight containers of oxidizable metal and dropped at preset times into a vertical quartz, inconel, or stainless steel reactor, heated at about 1050 °C, through which a constant flow of helium is maintained. When the samples are introduced, the helium stream is temporarily enriched with pure oxygen. Flash combustion takes place primed by the oxidation of the container. Quantitative combustion is then achieved by passing the gases over chromium trioxide and cupric oxide. The mixture of the combustion gases is transferred over copper at about 640 °C (840 °C in a steel reactor) to eliminate the excess of oxygen; then without stopping, it is introduced into the chromatographic column heated to about 120 °C (50 °C for Flash EA 1112 units). The individual components are then separated by elution in the order nitrogen, carbon dioxide, and water by a dedicated Poropak column (active carbon column for Flash EA 1112 units for nitrogen determination) and measured by a thermal conductivity detector. With dedicated software the percentage of elements present in the sample are calculated. The instrument is calibrated with standard pure organic compounds. K-factors or linear regression can be used for instrument calibration. The typical operator analysis time for a single sample is about 4 min, and the total elapsed time is 8 min.

NOTE 1—None of the four test methods is preferred as a referee test method.

NOTE 2—Other instrument models in addition to the four included here are available in the marketplace; however, no precision statements have been generated for them.

4.5 In all cases, the concentrations of carbon, hydrogen and nitrogen are calculated as functions of the following:

4.5.1 The measured instrumental responses,

4.5.2 The values for response per unit mass for the elements (established via instrument calibration), and

4.5.3 The mass of the sample.

4.6 A capability for performing these computations automatically can be included in the instrumentation utilized for these test methods.

5. Significance and Use

5.1 This is the first ASTM standard covering the simultaneous determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants.

5.2 Carbon, hydrogen, and particularly nitrogen analyses are useful in determining the complex nature of sample types covered by this test method. The CHN results can be used to estimate the processing and refining potentials and yields in the petrochemical industry.

5.3 The concentration of nitrogen is a measure of the presence of nitrogen containing additives. Knowledge of its concentration can be used to predict performance. Some petroleum products also contain naturally occurring nitrogen. Knowledge of hydrogen content in samples is helpful in

⁷ The sole source of supply of the Flash EA instruments known to the committee at this time is Thermo Fisher Scientific, Strada Rivoltana, 20090 Milano, Italy.

