

Designation: D86 – 23

Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure¹

This standard is issued under the fixed designation D86; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

1.1 This test method covers the atmospheric distillation of petroleum products and liquid fuels using a laboratory batch distillation unit to determine quantitatively the boiling range characteristics of such products as light and middle distillates, automotive spark-ignition engine fuels with or without oxygenates (see [Note 1](#)), aviation gasolines, aviation turbine fuels, diesel fuels, biodiesel blends up to 30 % volume, marine fuels, special petroleum spirits, naphthas, white spirits, kerosines, and Grades 1 and 2 burner fuels.

NOTE 1—An interlaboratory study was conducted in 2008 involving 11 different laboratories submitting 15 data sets and 15 different samples of ethanol-fuel blends containing 25 % volume, 50 % volume, and 75 % volume ethanol. The results indicate that the repeatability limits of these samples are comparable or within the published repeatability of the method (with the exception of FBP of 75 % ethanol-fuel blends). On this basis, it can be concluded that Test Method D86 is applicable to ethanol-fuel blends such as Ed75 and Ed85 (Specification [D5798](#)) or other ethanol-fuel blends with greater than 10 % volume ethanol. See ASTM RR:D02-1694 for supporting data.²

1.2 The test method is designed for the analysis of distillate fuels; it is not applicable to products containing appreciable quantities of residual material.

1.3 This test method covers both manual and automated instruments.

1.4 Unless otherwise noted, the values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.

1.5 **WARNING**—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause

serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.

1.6 *This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.*

1.7 *This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.*

2. Referenced Documents

2.1 All standards are subject to revision, and parties to agreement on this test method are to apply the most recent edition of the standards indicated below, unless otherwise specified, such as in contractual agreements or regulatory rules where earlier versions of the method(s) identified may be required.

2.2 ASTM Standards:³

- [D97 Test Method for Pour Point of Petroleum Products](#)
- [D323 Test Method for Vapor Pressure of Petroleum Products \(Reid Method\)](#)
- [D4057 Practice for Manual Sampling of Petroleum and Petroleum Products](#)
- [D4175 Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants](#)

¹ This test method is under the jurisdiction of ASTM Committee [D02](#) on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee [D02.08](#) on Volatility.

In the IP, the equivalent test method is published under the designation IP 123. It is under the jurisdiction of the Standardization Committee.

Current edition approved March 1, 2023. Published March 2023. Originally approved in 1921. Last previous edition approved in 2020 as D86 – 20b. DOI: 10.1520/D0086-23.

² Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1694. Contact ASTM Customer Service at service@astm.org.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

***A Summary of Changes section appears at the end of this standard**

D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products

D4953 Test Method for Vapor Pressure of Gasoline and Gasoline-Oxygenate Blends (Dry Method)

D5190 Test Method for Vapor Pressure of Petroleum Products (Automatic Method) (Withdrawn 2012)⁴

D5191 Test Method for Vapor Pressure of Petroleum Products and Liquid Fuels (Mini Method)

D5798 Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark-Ignition Engines

D5842 Practice for Sampling and Handling of Fuels for Volatility Measurement

D5949 Test Method for Pour Point of Petroleum Products (Automatic Pressure Pulsing Method)

D5950 Test Method for Pour Point of Petroleum Products (Automatic Tilt Method)

D5985 Test Method for Pour Point of Petroleum Products (Rotational Method)

D6300 Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products, Liquid Fuels, and Lubricants

D6708 Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material

E1 Specification for ASTM Liquid-in-Glass Thermometers

E77 Test Method for Inspection and Verification of Thermometers

E1272 Specification for Laboratory Glass Graduated Cylinders

E1405 Specification for Laboratory Glass Distillation Flasks

2.3 Energy Institute Standards:⁵

IP 69 Determination of Vapour Pressure—Reid Method

IP 123 Petroleum Products—Determination of Distillation Characteristics

IP 394 Determination of Air Saturated Vapour Pressure

IP Standard Methods for Analysis and Testing of Petroleum and Related Products 1996—Appendix A

3. Terminology

3.1 Definitions:

3.1.1 *decomposition*, *n*—of a hydrocarbon, the pyrolysis or cracking of a molecule yielding smaller molecules with lower boiling points than the original molecule.

3.1.2 *decomposition point*, *n*—in distillation, the corrected temperature reading that coincides with the first indications of thermal decomposition of the specimen.

3.1.3 *dry point*, *n*—in distillation, the corrected temperature reading at the instant the last drop of liquid evaporates from the lowest point in the flask.

3.1.4 *dynamic holdup*, *n*—in D86 distillation, the amount of material present in the neck of the flask, in the sidearm of the flask, and in the condenser tube during the distillation.

3.1.5 *emergent stem effect*, *n*—the offset in temperature reading caused by the use of total immersion mercury-in-glass thermometers in the partial immersion mode.

3.1.5.1 *Discussion*—In the partial immersion mode, a portion of the mercury thread, that is, the emergent portion, is at a lower temperature than the immersed portion, resulting in a shrinkage of the mercury thread and a lower temperature reading.

3.1.6 *end point (EP) or final boiling point (FBP)*, *n*—the maximum corrected thermometer reading obtained during the test.

3.1.6.1 *Discussion*—This usually occurs after the evaporation of all liquid from the bottom of the flask. The term maximum temperature is a frequently used synonym.

3.1.7 *front end loss*, *n*—loss due to evaporation during transfer from receiving cylinder to distillation flask, vapor loss during the distillation, and uncondensed vapor in the flask at the end of the distillation.

3.1.8 *initial boiling point (IBP)*, *n*—in D86 distillation, the corrected temperature reading at the instant the first drop of condensate falls from the lower end of the condenser tube.

3.1.9 *percent evaporated*, *n*—in distillation, the sum of the percent recovered and the percent loss.

3.1.9.1 *percent loss*, *n*—in distillation, one hundred minus the percent total recovery.

3.1.9.2 *corrected loss*, *n*—percent loss corrected for barometric pressure.

3.1.10 *percent recovered*, *n*—in distillation, the volume of condensate collected relative to the sample charge.

3.1.10.1 *percent recovery*, *n*—in distillation, maximum percent recovered relative to the sample charge.

3.1.10.2 *corrected percent recovery*, *n*—in distillation, the percent recovery, adjusted for the corrected percent loss.

3.1.10.3 *percent total recovery*, *n*—in distillation, the combined percent recovery and percent residue.

3.1.11 *percent residue*, *n*—in distillation, the volume of residue relative to the sample charge.

3.1.12 *rate of change (or slope)*, *n*—the change in temperature reading per percent evaporated or recovered, as described in 13.2.

3.1.13 *sample charge*, *n*—the amount of sample used in a test.

3.1.14 *temperature lag*, *n*—the offset between the temperature reading obtained by a temperature sensing device and the true temperature at that time.

3.1.15 *temperature measurement device*, *n*—a thermometer, as described in 6.3.1, or a temperature sensor, as described in 6.3.2.

3.1.15.1 *temperature reading*, *n*—the temperature obtained by a temperature measuring device or system that is equal to the thermometer reading described in 3.1.15.3.

3.1.15.2 *corrected temperature reading*, *n*—the temperature reading, as described in 3.1.15.1, corrected for barometric pressure.

⁴ The last approved version of this historical standard is referenced on www.astm.org.

⁵ Available from Energy Institute, 61 New Cavendish St., London, WIG 7AR, U.K., <http://www.energyinst.org.uk>.

3.1.15.3 *thermometer reading (or thermometer result)*, n —the temperature of the saturated vapor measured in the neck of the flask below the vapor tube, as determined by the prescribed thermometer under the conditions of the test.

3.1.15.4 *corrected thermometer reading, n*—the thermometer reading, as described in 3.1.15.3, corrected for barometric pressure.

4. Summary of Test Method

4.1 Based on its composition, vapor pressure, expected IBP or expected EP, or combination thereof, the sample is placed in one of four groups. Apparatus arrangement, condenser temperature, and other operational variables are defined by the group in which the sample falls.

4.2 A 100 mL specimen of the sample is distilled under prescribed conditions for the group in which the sample falls. The distillation is performed in a laboratory batch distillation unit at ambient pressure under conditions that are designed to provide approximately one theoretical plate fractionation. Systematic observations of temperature readings and volumes of condensate are made, depending on the needs of the user of the data. The volume of the residue and the losses are also recorded.

4.3 At the conclusion of the distillation, the observed vapor temperatures can be corrected for barometric pressure and the data are examined for conformance to procedural requirements, such as distillation rates. The test is repeated if any specified condition has not been met.

4.4 Test results are commonly expressed as percent evaporated or percent recovered versus corresponding temperature, either in a table or graphically, as a plot of the distillation curve.

5. Significance and Use

5.1 The basic test method of determining the boiling range of a petroleum product by performing a simple batch distillation has been in use as long as the petroleum industry has existed. It is one of the oldest test methods under the jurisdiction of ASTM Committee D02, dating from the time when it was still referred to as the Engler distillation. Since the test method has been in use for such an extended period, a tremendous number of historical data bases exist for estimating end-use sensitivity on products and processes.

5.2 The distillation (volatility) characteristics of hydrocarbons have an important effect on their safety and performance, especially in the case of fuels and solvents. The boiling range gives information on the composition, the properties, and the behavior of the fuel during storage and use. Volatility is the major determinant of the tendency of a hydrocarbon mixture to produce potentially explosive vapors.

5.3 The distillation characteristics are critically important for both automotive and aviation gasolines, affecting starting, warm-up, and tendency to vapor lock at high operating temperature or at high altitude, or both. The presence of high boiling point components in these and other fuels can significantly affect the degree of formation of solid combustion deposits.

5.4 Volatility, as it affects rate of evaporation, is an important factor in the application of many solvents, particularly those used in paints.

5.5 Distillation limits are often included in petroleum product specifications, in commercial contract agreements, process refinery/control applications, and for compliance to regulatory rules.

6. Apparatus

6.1 Basic Components of the Apparatus:

6.1.1 The basic components of the distillation unit are the distillation flask, the condenser and associated cooling bath, a metal shield or enclosure for the distillation flask, the heat source, the flask support, the temperature measuring device, and the receiving cylinder to collect the distillate.

6.1.2 Figs. 1 and 2 are examples of manual distillation units.

6.1.3 In addition to the basic components described in 6.1.1, automated units also are equipped with a system to measure and automatically record the temperature and the associated recovered volume in the receiving cylinder.

6.2 A detailed description of the apparatus is given in Annex A2.

6.3 Temperature Measuring Device:

6.3.1 Mercury-in-glass thermometers, if used, shall be filled with an inert gas, graduated on the stem and enamel backed. They shall conform to Specification E1 or IP Standard Methods for Analysis and Testing of Petroleum and Related Products 1996—Appendix A, or both, for thermometers ASTM 7C/IP 5C and ASTM 7F for the low range thermometers, and ASTM 8C/IP 6C and ASTM 8F for the high range thermometers.

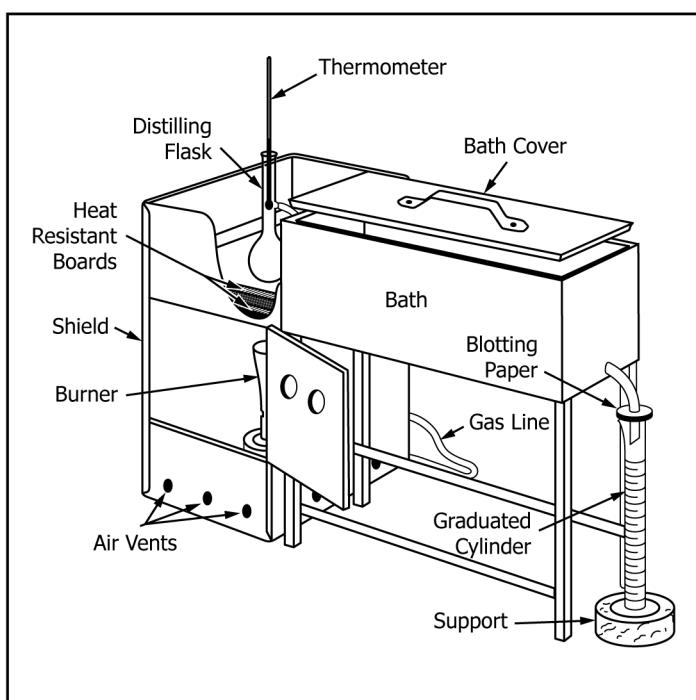


FIG. 1 Apparatus Assembly Using Gas Burner