Method 1630

Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry

August, 1998

U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Engineering and Analysis Division (4303)
401 M Street SW
Washington, D.C. 20460

Acknowledgments

This method was prepared under the direction of William A. Telliard of the Engineering and Analysis Division (EAD) within the U.S. Environmental Agency's (EPA's) Office of Science and Technology (OST). The method was prepared by Nicholas Bloom of Frontier Geosciences under EPA Contract 68-C3-0337 with the DynCorp Environmental Programs Division. Additional assistance in preparing the method was provided by DynCorp Environmental and Interface, Inc.

Disclaimer

This draft method has been reviewed and approved for publication by the Analytical Methods Staff within the Engineering and Analysis Division of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. EPA plans further validation of this draft method. The method may be revised following validation to reflect results of the study.

EPA welcomes suggestions for improvement of this method. Suggestions and questions concerning this method or its application should be addressed to:

W.A. Telliard Engineering and Analysis Division (4303) U.S. Environmental Protection Agency 401 M Street SW Washington, D.C. 20460

Phone: 202/260-7134 Fax: 202/260-7185

Introduction

This analytical method supports water quality monitoring programs authorized under the Clean Water Act (CWA, the "Act"). CWA Section 304(a) requires EPA to publish water quality criteria that reflect the latest scientific knowledge concerning the physical fate (e.g., concentration and dispersal) of pollutants, the effects of pollutants on ecological and human health, and the effect of pollutants on biological community diversity, productivity, and stability.

CWA Section 303 requires each state to set a water quality standard for each body of water within its boundaries. A state water quality standard consists of a designated use or uses of a water body or a segment of a water body, the water quality criteria that are necessary to protect the designated use or uses, and an antidegradation policy. These water quality standards serve two purposes: (1) they establish the water quality goals for a specific water body, and (2) they are the basis for establishing water quality-based treatment controls and strategies beyond the technology-based controls required by CWA Sections 301(b) and 306.

In defining water quality standards, the state may use narrative criteria, numeric criteria, or both. However, the 1987 amendments to CWA required states to adopt numeric criteria for toxic pollutants (designated in Section 307(a) of the Act) based on EPA Section 304(a) criteria or other scientific data, when the discharge or presence of those toxic pollutants could reasonably be expected to interfere with designated uses.

In some cases, these water quality criteria are as much as 280 times lower than those achievable using existing EPA methods and required to support technology-based permits. Therefore, EPA developed new sampling and analysis methods to specifically address state needs for measuring toxic metals at water quality criteria levels, when such measurements are necessary to protect designated uses in state water quality standards. The latest criteria published by EPA are those listed in the National Toxics Rule (58 FR 60848) and the Stay of Federal Water Quality Criteria for Metals (60 FR 22228). These rules include water quality criteria for 13 metals, and it is these criteria on which the new sampling and analysis methods are based. Method 1630 was specifically developed to provide reliable measurements of methyl mercury at EPA WQC levels.

In developing methods for determination of trace metals, EPA found that one of the greatest difficulties was precluding sample contamination during collection, transport, and analysis. The degree of difficulty, however, is highly dependent on the metal and site-specific conditions. This method is designed to preclude contamination in nearly all situations. It also contains procedures necessary to produce reliable results at the lowest ambient water quality criteria published by EPA. In recognition of the variety of situations to which this method may be applied, and in recognition of continuing technological advances, Method 1630 is performance based. Alternative procedures may be used so long as those procedures are demonstrated to yield reliable results.

Requests for additional copies of this method should be directed to:

U.S. EPA NCEPI 11209 Kenwood Road Cincinnati, OH 45242 513/489-8190